non-abelian, soluble, monomial
Aliases: C62⋊4S3, C32⋊1S4, C3⋊S4⋊C3, (C3×A4)⋊C6, C3.3(C3×S4), C32⋊A4⋊1C2, C22⋊(C32⋊C6), (C2×C6).4(C3×S3), SmallGroup(216,92)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C2×C6 — C3×A4 — C32⋊A4 — C62⋊S3 |
C3×A4 — C62⋊S3 |
Generators and relations for C62⋊S3
G = < a,b,c,d,e,f | a3=b3=c2=d2=e3=f2=1, ab=ba, ac=ca, ad=da, eae-1=ab-1, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >
Character table of C62⋊S3
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 3E | 3F | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | |
size | 1 | 3 | 18 | 2 | 3 | 3 | 24 | 24 | 24 | 18 | 3 | 3 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | -1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ6 | ζ65 | ζ6 | ζ65 | linear of order 6 |
ρ4 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ5 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | -1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ65 | ζ6 | ζ65 | ζ6 | linear of order 6 |
ρ7 | 2 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | 2 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | -1 | 0 | -1+√-3 | -1-√-3 | -1-√-3 | 2 | -1+√-3 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ9 | 2 | 2 | 0 | 2 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | -1 | 0 | -1-√-3 | -1+√-3 | -1+√-3 | 2 | -1-√-3 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ10 | 3 | -1 | -1 | 3 | 3 | 3 | 0 | 0 | 0 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from S4 |
ρ11 | 3 | -1 | 1 | 3 | 3 | 3 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | orthogonal lifted from S4 |
ρ12 | 3 | -1 | 1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | -1 | ζ65 | ζ6 | ζ6 | -1 | ζ65 | ζ32 | ζ3 | ζ6 | ζ65 | complex lifted from C3×S4 |
ρ13 | 3 | -1 | 1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | -1 | ζ6 | ζ65 | ζ65 | -1 | ζ6 | ζ3 | ζ32 | ζ65 | ζ6 | complex lifted from C3×S4 |
ρ14 | 3 | -1 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 1 | ζ65 | ζ6 | ζ6 | -1 | ζ65 | ζ6 | ζ65 | ζ32 | ζ3 | complex lifted from C3×S4 |
ρ15 | 3 | -1 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 1 | ζ6 | ζ65 | ζ65 | -1 | ζ6 | ζ65 | ζ6 | ζ3 | ζ32 | complex lifted from C3×S4 |
ρ16 | 6 | -2 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ17 | 6 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ18 | 6 | -2 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -2+2√-3 | -2-2√-3 | 1+√-3 | 1 | 1-√-3 | 0 | 0 | 0 | 0 | complex faithful |
ρ19 | 6 | -2 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -2-2√-3 | -2+2√-3 | 1-√-3 | 1 | 1+√-3 | 0 | 0 | 0 | 0 | complex faithful |
(7 8 9)(10 11 12)(13 14 15)(16 17 18)
(1 5 3)(2 6 4)(7 8 9)(10 12 11)(13 15 14)(16 17 18)
(1 2)(3 4)(5 6)(10 15)(11 13)(12 14)
(7 16)(8 17)(9 18)(10 15)(11 13)(12 14)
(1 14 8)(2 12 17)(3 15 7)(4 10 16)(5 13 9)(6 11 18)
(1 2)(3 6)(4 5)(7 11)(8 12)(9 10)(13 16)(14 17)(15 18)
G:=sub<Sym(18)| (7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,5,3)(2,6,4)(7,8,9)(10,12,11)(13,15,14)(16,17,18), (1,2)(3,4)(5,6)(10,15)(11,13)(12,14), (7,16)(8,17)(9,18)(10,15)(11,13)(12,14), (1,14,8)(2,12,17)(3,15,7)(4,10,16)(5,13,9)(6,11,18), (1,2)(3,6)(4,5)(7,11)(8,12)(9,10)(13,16)(14,17)(15,18)>;
G:=Group( (7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,5,3)(2,6,4)(7,8,9)(10,12,11)(13,15,14)(16,17,18), (1,2)(3,4)(5,6)(10,15)(11,13)(12,14), (7,16)(8,17)(9,18)(10,15)(11,13)(12,14), (1,14,8)(2,12,17)(3,15,7)(4,10,16)(5,13,9)(6,11,18), (1,2)(3,6)(4,5)(7,11)(8,12)(9,10)(13,16)(14,17)(15,18) );
G=PermutationGroup([[(7,8,9),(10,11,12),(13,14,15),(16,17,18)], [(1,5,3),(2,6,4),(7,8,9),(10,12,11),(13,15,14),(16,17,18)], [(1,2),(3,4),(5,6),(10,15),(11,13),(12,14)], [(7,16),(8,17),(9,18),(10,15),(11,13),(12,14)], [(1,14,8),(2,12,17),(3,15,7),(4,10,16),(5,13,9),(6,11,18)], [(1,2),(3,6),(4,5),(7,11),(8,12),(9,10),(13,16),(14,17),(15,18)]])
G:=TransitiveGroup(18,97);
(7 8 9)(10 11 12)(13 14 15)(16 17 18)
(1 5 3)(2 6 4)(7 9 8)(10 11 12)(13 15 14)(16 17 18)
(1 2)(3 4)(5 6)(7 14)(8 15)(9 13)
(7 14)(8 15)(9 13)(10 16)(11 17)(12 18)
(1 8 16)(2 15 10)(3 9 18)(4 13 12)(5 7 17)(6 14 11)
(3 5)(4 6)(7 18)(8 16)(9 17)(10 15)(11 13)(12 14)
G:=sub<Sym(18)| (7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,5,3)(2,6,4)(7,9,8)(10,11,12)(13,15,14)(16,17,18), (1,2)(3,4)(5,6)(7,14)(8,15)(9,13), (7,14)(8,15)(9,13)(10,16)(11,17)(12,18), (1,8,16)(2,15,10)(3,9,18)(4,13,12)(5,7,17)(6,14,11), (3,5)(4,6)(7,18)(8,16)(9,17)(10,15)(11,13)(12,14)>;
G:=Group( (7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,5,3)(2,6,4)(7,9,8)(10,11,12)(13,15,14)(16,17,18), (1,2)(3,4)(5,6)(7,14)(8,15)(9,13), (7,14)(8,15)(9,13)(10,16)(11,17)(12,18), (1,8,16)(2,15,10)(3,9,18)(4,13,12)(5,7,17)(6,14,11), (3,5)(4,6)(7,18)(8,16)(9,17)(10,15)(11,13)(12,14) );
G=PermutationGroup([[(7,8,9),(10,11,12),(13,14,15),(16,17,18)], [(1,5,3),(2,6,4),(7,9,8),(10,11,12),(13,15,14),(16,17,18)], [(1,2),(3,4),(5,6),(7,14),(8,15),(9,13)], [(7,14),(8,15),(9,13),(10,16),(11,17),(12,18)], [(1,8,16),(2,15,10),(3,9,18),(4,13,12),(5,7,17),(6,14,11)], [(3,5),(4,6),(7,18),(8,16),(9,17),(10,15),(11,13),(12,14)]])
G:=TransitiveGroup(18,99);
C62⋊S3 is a maximal subgroup of
C62⋊5D6
C62⋊S3 is a maximal quotient of C32⋊CSU2(𝔽3) C32⋊2GL2(𝔽3) C62⋊5Dic3
Matrix representation of C62⋊S3 ►in GL6(ℤ)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 1 |
0 | 0 | 0 | 0 | -1 | 0 |
-1 | 1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 1 |
0 | 0 | 0 | 0 | -1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
G:=sub<GL(6,Integers())| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,-1,-1,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0],[-1,-1,0,0,0,0,1,0,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0],[0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0] >;
C62⋊S3 in GAP, Magma, Sage, TeX
C_6^2\rtimes S_3
% in TeX
G:=Group("C6^2:S3");
// GroupNames label
G:=SmallGroup(216,92);
// by ID
G=gap.SmallGroup(216,92);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-2,2,218,224,867,3244,556,1949,989]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^3=c^2=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b^-1,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations
Export
Subgroup lattice of C62⋊S3 in TeX
Character table of C62⋊S3 in TeX